Technical Evaluation Study

Project No. 23843

Sensitivity of Hydrogen Production via Steam Methane Reforming to High Temperature Gas-Cooled Reactor Outlet Temperature Process Analysis

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Idaho National Laboratory	y			
SENSITIVITY OF HYD	DROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH		Revision:	0	
OUTLET TEMPERATU	RE PROCESS ANALYSIS	Effective Date:	08/31/2010 09/15/2010	Page: 1 of 22
NGNP Project	Technical Evaluation Study (TE	V)	eCR Number:	583106

Manual: TKA 11-509-TRA 9-2-10

Signatures					
Signature and Typed or Printed Name	Signature Code	Date (mm/dd/yyyy)	Organization/Discipline		
R. y. War	Р	09/01/2010	NGNP Engineering Support		
R. A. Wood					
Richard O Dourdwa	C	9/01/2010	NGNP Engineering Support		
R. D. Boardman					
Ju Julson for	С	9/1/2010	NGNP Engineering Technical Manager		
M. W. Patterson		·			
Alp M. M.	А	9/01/10	NGNP Engineering Director		
P. M. Mills		×			

For preparer of the document. P

A For approval: This is for non-owner approvals that may be required as directed by a given program or project. This signature may not be applicable for all uses of this form.

С For documented review and concurrence.

Note: Applicable QLD: REC-000101

Idaho National Laboratory

SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision:	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Date:	00/15/2010	Dogo: 2 of 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date.	09/13/2010	rage. 2 01 22

REVISION LOG

Rev.	Date	Affected Pages	Revision Description
0	09/15/10	All	Newly issued document.

Idaho National Laboratory			
SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision [.]	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Deter	00/15/2010	Dega: 2 of 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date.	09/13/2010	Fage. 5 01 22

EXECUTIVE SUMMARY

This technical evaluation (TEV) has been prepared as part of a study for the Next Generation Nuclear Plant (NGNP) Project to evaluate integration of High Temperature Gas-cooled Reactor (HTGR) technology with conventional chemical processes. This TEV addresses the impact of increasing HTGR reactor outlet temperature (ROT) on hydrogen production via steam methane reforming (SMR) of natural gas.

The production of hydrogen via SMR has previously been addressed in detail in TEV-953 (INL 2010a). In that report, detailed process models for both conventional SMR hydrogen production and HTGR-integrated SMR hydrogen production with an ROT of 750°C (1,382°F) were developed. This report is done as a follow-up to TEV-953, and evaluates the impact of increasing the ROT to 925°C (1,697°F).

For this evaluation, six cases were considered, all of which include carbon capture (CC):

Case 1 – Conventional non-HTGR-integrated SMR

Case 2 – HTGR-integrated SMR with an ROT of 725°C (supplying 700°C heat)

Case 3 – HTGR-integrated SMR with an ROT of 775°C (supplying 750°C heat)

Case 4 – HTGR-integrated SMR with an ROT of 825°C (supplying 800°C heat)

Case 5 – HTGR-integrated SMR with an ROT of 875°C (supplying 850°C heat)

Case 6 – HTGR-integrated SMR with an ROT of 925°C (supplying 900°C heat).

The optimal steam reforming temperature selected for this analysis was $871^{\circ}C$ (1,600°F). In Case 6, the HTGR is capable of providing heat to the process at 900°C (1,652°F), thereby supplying the entire heat duty required for reforming. Although follow-on HTGRs are planned to have an ROT as high as 950°C (1,742°F), there is little or no benefit to the SMR process of pushing the ROT higher than required to supply heat to the reformer. Hence, ROTs above 925°C (1,697°F) were not investigated in this study.

A simplified diagram showing the major inputs and outputs from the process is shown in Figure ES-1 (Case 5 results shown). Primary inputs to the process are natural gas, heat in the form of hot helium from the HTGR, electricity from the HTGR, and water. Primary outputs from the process are hydrogen, 4.2 MPa (600 psig) steam, concentrated CO_2 (suitable for sequestration or use in enhanced oil recovery), and combustion exhaust that also contains CO_2 .

In Case 1, reforming heat is provided to a single reformer by combusting a combination of natural gas and fuel gas. In Cases 2–5, two reforming stages are used. In the first stage, heat is provided from hot helium supplied by the HTGR. In the second stage, combustion

Idaho National Laboratory			
SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision [.]	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Deter	00/15/2010	Dega: 4 of 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date:	09/15/2010	Page: 4 01 22

of fuel gas is used to raise the reforming temperature to the target temperature of 871°C (1,600°F). In Case 6, all reforming heat is provided from hot helium supplied by the HTGR to a single reformer. In all cases, heat recuperation is utilized to raise steam for use within the plant. Steam generated in excess of that required for use within the plant is exported as a saleable byproduct.

Figure ES-1. SMR SMR H₂ production material balance results for Case 5.

Significant results from this evaluation are:

- Increasing the HTGR ROT significantly reduces natural gas consumption, as shown in Figure ES-2. By integrating nuclear heat at the lowest temperature considered, 725°C (1,337°F) ROT, natural gas consumption can be reduced by 11.6% compared to the conventional process. If the ROT is increased to 925°C (1,697°F), a reduction of 30.9% can be realized compared to the conventional process.
- As the ROT is increased, the ratio of hydrogen product to natural gas feed increases significantly. Also, by shifting the required reforming duty from fuelgas combustion to nuclear heat, less combustion exhaust gas is generated. Because steam is raised to recover heat from the combustion exhaust gas, a decrease in fuelgas combustion leads to a corresponding decrease in the amount of steam generated and exported from the plant. These results are shown in Figure ES-3.
- CO₂ emissions are also reduced as the ROT is increased. For an ROT of 725°C (1,337°F), CO₂ emissions are reduced by 39% compared to the conventional SMR case. For an ROT of 925°C (1,697°F), CO₂ emissions are reduced by an additional 73% from the 725°C (1,337°F) ROT case, representing a total CO₂ emissions reduction of 83% compared to the conventional SMR case. CO₂ disposition for each case is shown graphically in Figure ES-4.
- As the ROT increases, the difference between the helium return temperature and the optimal helium inlet temperature to the HTGR decreases. At an ROT of

Idaho National Laboratory					
SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961			
VIA STEAM METHANE REFORMING TO HIGH	Revision [.]	0			
TEMPERATURE GAS-COOLED REACTOR	Effective Deter	00/15/2010	Deges 5 of 22		
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date:	09/13/2010	rage. 5 01 22		

725°C (1,337°F), the difference is 71°C (128°F), while an ROT of 925°C (1,697°F) produces a difference of only 3°C (5°F). Hence, the higher ROT is more compatible with a "heat-only" HTGR configuration. At lower ROTs, inserting a power cycle is the most likely scenario to utilize the excess heat returned from the reformer.

• Of all the HTGR-integrated cases considered, only the 925°C (1,697°F) ROT case completely eliminates the need for two reforming stages—nuclear heat alone is adequate in this case to provide the desired reforming temperature. This greatly simplifies the design of the reformer.

Based on the results of this study, an economic analysis is recommended to further quantify the benefits offered by increasing the ROT from $725^{\circ}C(1,337^{\circ}F)$ to $925^{\circ}C(1,697^{\circ}F)$.

Figure ES-2. Natural gas consumption as a function of ROT.

SENSITIVITY OF HYDROGEN PRODUCTION
VIA STEAM METHANE REFORMING TO HIGH
TEMPERATURE GAS-COOLED REACTOR
OUTLET TEMPERATURE PROCESS ANALYSISIdentifier:
TEV-961
Revision:
0
Effective Date:TEV-961
0
Page: 6 of 22

Figure ES-3. SMR H₂ product and steam export yields as a function of ROT.

SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision [.]	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Deter	00/15/2010	Degai 7 of 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date.	09/13/2010	Page. / 01 22

Figure ES-4. SMR CO₂ disposition as a function of ROT.

Idaho National Laboratory			
SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision:	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Date:	00/15/2010	Dage: 8 of 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date.	09/13/2010	r age. 8 01 22

CONTENTS

EXEC	UTIVE	SUMMARY	3
ACRO	NYMS	AND NOMENCLATURE	9
1.	INTRO	DDUCTION	.10
2.	SENSI	TIVITY ANALYSIS DESCRIPTION	.11
	2.1	Baseline Process Configuration	.11
	2.2	Cases Considered	.13
	2.3	Gas Recycle Considerations	.13
3.	PROC	ESS MODELING RESULTS AND OBSERVATIONS	.14
4.	FUTU	RE WORK AND RECOMMENDATIONS	.21
5.	REFEI	RENCES	.21
6.	APPE	NDIXES	.21

SENSITIVITY OF HYDROGEN PRODUCTIONIdentifier:TEV-961VIA STEAM METHANE REFORMING TO HIGHRevision:0TEMPERATURE GAS-COOLED REACTOREffective Date:09/15/2010

Page: 9 of 22

ACRONYMS AND NOMENCLATURE

- CC carbon capture
- DOE Department of Energy
- HHV higher heating value
- HTGR High Temperature Gas-cooled Reactor
- INL Idaho National Laboratory
- MMBTU 1,000,000 British thermal units
- MMSCF 1,000,000 standard cubic feet
- NGNP Next Generation Nuclear Plant
- ROT reactor outlet temperature
- SMR steam methane reformer
- TEV technical evaluation

Idaho National Laboratory			
SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision [.]	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Deter	00/15/2010	Daga: 10 of 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date:	09/13/2010	Page. 10 01 22

1. INTRODUCTION

This technical evaluation (TEV) has been prepared as part of a study for the Next Generation Nuclear Plant (NGNP) Project to evaluate integration of High Temperature Gas-cooled Reactor (HTGR) technology with conventional chemical processes. The NGNP Project is being conducted under U.S. Department of Energy (DOE) direction to meet a national strategic need identified in the *2005 Energy Policy Act* to promote reliance on safe, clean, economical nuclear energy and to establish a greenhouse-gas-free technology for the production of hydrogen. NGNP represents an integration of hightemperature reactor technology with advanced hydrogen, electricity, and process heat production capabilities, thereby meeting the mission need identified by DOE. The strategic goal of the NGNP Project is to broaden the environmental and economic benefits of nuclear energy in the U.S. economy by demonstrating its applicability to market sectors not being served by light water reactors.

The HTGR produces steam, high-temperature helium that can be used for process heat, and/or electricity. Previous studies conducted by Idaho National Laboratory (INL) over the past year have assumed an HTGR outlet temperature of 750° C (1,382°F); this reflects the initial HTGR design and assumes a more conservative outlet temperature. Additionally, a 50°C (90°F) temperature approach was assumed between the primary and secondary helium loops when helium was the delivered working fluid. As a result, the maximum helium stream temperature available for heat exchange in those studies was 700° C (1,292°F).^a

Although initial HTGR implementations will likely target an HTGR outlet temperature of 750°C (1,382°F), temperatures of up to 950°C (1,742°F) are anticipated for later designs. Unlike previous INL studies performed during the last year, this study removes the 750°C (1,382°F) maximum HTGR outlet temperature assumption. Instead, the impact of increasing the HTGR reactor outlet temperature (ROT) is assessed. For this study, a 25°C (45°F) temperature approach is assumed between the primary and secondary helium loops, as opposed to the 50°C (90°F) assumption used in previous studies. This study investigates the impact of varying ROTs from 725°C (1,337°F) to 925°C (1,697°F). Hence, using the 25°C (45°F) temperature approach assumption between the primary and secondary loops, high-temperature helium can be delivered at temperatures between 700°C (1,292°F) and 900°C (1,652°F). HTGR product conditions assumed for this analysis are shown in Table 1.

a. See TEV-666, TEV-667, TEV-671, TEV-672, TEV-674, TEV-693, TEV-704, TEV-953, and INL/EXT-09-16942.

Idaho National Laboratory			
SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision [.]	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Deter	00/15/2010	$\mathbf{D}_{\mathbf{a},\mathbf{c},\mathbf{c}}$, 11 of 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date:	09/13/2010	rage. 11 01 22

HTGR Product	Product Description
Steam	540°C (1,004°F) and 17 MPa
High-Temperature Helium	Delivered at 700°C (1,292°F) and 9.1 MPa
Electricity	Generated by Rankine cycle with 40% thermal efficiency

Table 1. Projected outputs of NGNP.

The production of hydrogen via steam methane reforming (SMR) of natural gas has previously been addressed in detail in TEV-953 (INL 2010a). In that report, detailed process models for both conventional SMR hydrogen production and HTGR-integrated SMR hydrogen production were developed. The models documented in TEV-953 are used as the basis for the temperature sensitivity analysis conducted in this report. This TEV assumes familiarity with TEV-953; hence, detailed descriptions of the process models documented in TEV-953 are not presented here.

The process simulations used for this analysis have been developed in Aspen Plus, a state-of-the-art, steady-state chemical process simulator (Aspen 2006). This study makes extensive use of these models; this TEV assumes familiarity with Aspen Plus. A detailed explanation of the software capabilities, thermodynamic packages, unit operation models, and solver routines is beyond the scope of this study.

This TEV first presents the general process configuration on which the sensitivity analysis is based. Next, conditions for the specific cases modeled are presented. Issues discovered during modeling that required slight modification to the process flowsheet are then presented, followed by a brief discussion of the study limitations. Finally, results of the temperature sensitivity analysis are presented and discussed.

2. SENSITIVITY ANALYSIS DESCRIPTION

2.1 Baseline Process Configuration

The process configuration selected as the basis for the temperature sensitivity study includes carbon capture (CC) and is taken from TEV-953. A simplified block flow diagram of the process is presented in Figure 1; a detailed process description can be found in TEV-953, "HTGR-Integrated Hydrogen Production via Steam Methane Reforming (SMR) Process Analysis." Carbon capture was included in this study for the following reasons:

1. Removal of CO₂ produces a smaller volume of fuelgas. It is more reasonable to recycle a smaller volume to the reformer, as it will not dramatically increase the size of the reformer and gas cleanup equipment.

Idaho National Laboratory			
SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision [.]	0	
TEMPERATURE GAS-COOLED REACTOR	Effection Deter	00/15/2010	D 12 . £ 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date:	09/15/2010	Page: 12 of 22

- 2. Fuelgas in excess of what is required to fire the second stage reformer can be recycled to the reformer tubes to increase syngas production and ultimately maximize hydrogen production.
- 3. Removal of CO₂ limits CO₂ concentration in the reformer which improves hydrogen yield by suppressing the reverse water gas shift reaction. This reduces the load on the downstream water gas shift reactors.
- 4. The feasibility of recycling fuel gas to the reformer tubes is questionable unless CC is implemented. If fuel gas cannot be recycled, it must be used for a purpose other than to increase hydrogen production. The most likely use would be to generate additional steam for export from the plant. However, the nuclear reactor is itself an excellent heat source—generation of additional export heat in the form of steam from the reformer is therefore undesirable.

Figure 1. SMR process used in the sensitivity analysis.

As described in TEV-953, two reforming stages are utilized: the first stage uses helium from the HTGR as the heat transfer medium, and the second stage combusts fuelgas to supply additional higher-temperature heat to complete the reforming process. Increasing the ROT of the HTGR allows more of the reforming to be accomplished in the first stage. When helium can be supplied to the process at a temperature above $871^{\circ}C(1,600^{\circ}F)$ [corresponding to an ROT of $896^{\circ}C(1,645^{\circ}F)$ for the assumed $25^{\circ}C(45^{\circ}F)$ temperature approach between the primary and secondary loops], the potential exists to supply all reforming heat from the HTGR, thus completely eliminating the fuelgas-fired reformer stage.

2.2 Cases Considered

Two cases from TEV-953 are included in this study for comparison purposes: (1) the conventional non-HTGR-integrated SMR case with CC, and (2) the HTGR-integrated SMR case with an ROT of 725° C (1,337°F) and CC.^b Four additional cases are evaluated as part of this study, each increasing the HTGR ROT by 50°C (90°F) until a maximum ROT of 925°C (1,697°F) is achieved. Hence, a total of six cases are compared and evaluated in this study, all of which include CC:

Case 1 - Conventional non-HTGR-integrated SMR

Case 2 – HTGR-integrated SMR with an ROT of 725°C (supplying 700°C heat)

Case 3 – HTGR-integrated SMR with an ROT of 775°C (supplying 750°C heat)

Case 4 – HTGR-integrated SMR with an ROT of 825°C (supplying 800°C heat)

Case 5 – HTGR-integrated SMR with an ROT of 875°C (supplying 850°C heat)

Case 6 – HTGR-integrated SMR with an ROT of 925°C (supplying 900°C heat).

The optimal steam reforming temperature selected for this analysis was 871°C (1,600°F). In Case 6, the HTGR is capable of providing heat to the process at 900°C (1,652°F), thereby supplying the entire heat duty required for reforming. Although follow-on HTGRs are planned to have an ROT as high as 950°C (1,742°F), there is little or no benefit to the SMR process of pushing the ROT higher than required to supply heat to the reformer. Hence, ROTs above 925°C (1,697°F) were not investigated in this study.

2.3 Gas Recycle Considerations

The natural gas feedstock considered in this study contains 1.2 mol% nitrogen. Because the Selexol solvent used for CO₂ removal is not selective for nitrogen removal, and because the pressure swing absorption process is extremely efficient

A process description and flowsheet for the conventional non-HTGR-integrated case can be found in TEV-953. Note that for Case 2, a ROT of 725°C (1,337°F) corresponds to the 750°C (1,382°F) ROT case from TEV-953 due to changing the assumption for temperature approach between the primary and secondary helium loops from 50°C (90°F) to 25°C (45°F).

Idaho National Laboratory			
SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision [.]	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Deter	~ 00/15/2010	$\mathbf{D}_{\mathbf{a},\mathbf{c},\mathbf{c}}$, 14 of 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date:	09/15/2010	Page: 14 01 22

at separating only hydrogen, the nitrogen present in the feedstock is partitioned almost exclusively to the fuelgas stream. As the ROT is increased, the fraction of fuelgas recycled to the reformer tubes also increases. In Case 6 where it is possible to recycle all of the fuelgas to the reformer tubes, there is no outlet in the system for nitrogen; hence, nitrogen will build up to unacceptable levels in the process. There are several options to alleviate this problem, the two most obvious being: (1) purge a small fraction of fuelgas solely for the purpose of controlling nitrogen buildup; and (2) include a small separation unit to remove nitrogen from the fuelgas. For this analysis, it was decided to add a small cryogenic separation unit to remove nitrogen from the fuelgas in Case 6. This option was selected over the purge option because it has the potential to maximize hydrogen production for a given natural gas feed rate. Hence, for Case 6 the flowsheet shown in Figure 1 was modified to eliminate the second reforming stage and to add a small cryogenic separation unit on the fuelgas stream. Details of the modified flowsheet for Case 6 can be found in Appendix A.

3. PROCESS MODELING RESULTS AND OBSERVATIONS

High-level material and energy balances from the modeling are presented in Figure 2 and detailed results are tabulated in Table 2. For the complete modeling results, see Appendix A. Aspen stream results for all cases are presented in electronic Appendixes B, C, D, E, F, and G. Analysis indicates that integrating nuclear heat into the SMR flowsheet and increasing the HTGR ROT significantly reduces natural gas consumption. By integrating nuclear heat at the lowest temperature considered [700°C (1,292°F) helium supply; 725°C (1,337°F) ROT], natural gas consumption can be reduced by 11.6% compared to the conventional process. If the helium supply temperature can be increased to 900°C (1,652°F) [925°C (1,697°F) ROT], a reduction of 30.9% can be realized compared to the conventional process. Natural gas consumption results for each case are shown graphically in Figure 3.

¹Does not include heat rejection requirement for the nuclear plant.

Figure 2. SMR hydrogen production temperature sensitivity modeling material balance results.

Idaho National LaboratorySENSITIVITY OF HYDROGEN PRODUCTION
VIA STEAM METHANE REFORMING TO HIGH
TEMPERATURE GAS-COOLED REACTOR
OUTLET TEMPERATURE PROCESS ANALYSISIdentifier:
Revision:
0
Effective Date:TEV-961
0
Page: 16 of 22

Table 2. SMR hydrogen production temperature sensitivity modeling results.

	2	0				
		HTGR- Integrated	HTGR- Integrated	HTGR- Integrated	HTGR- Integrated	HTGR- Integrated
	Conventional	(725°C ROT)	(775°C ROT)	(825°C ROT)	(875°C ROT)	(925°C ROT)
Inputs		· · · · ·		· · · · ·	· · · · ·	
Natural Gas Feed Rate (MMSCFD) ¹	49.2	43.5	40.8	37.7	34.5	34.0
Outputs						
Hydrogen (MMSCFD) ¹	130	130	130	130	130	130
Steam Export (MMBtu/hr)	23.6	176.2	138.8	97.4	54.3	83.7
Performance Metrics						
H ₂ Product/Natural Gas Feed (scf/scf)	2.64	2.99	3.19	3.45	3.77	3.82
Steam Export/H ₂ Product (lb/lb)	0.80	5.94	4.68	3.28	1.83	2.82
Process Thermal Efficiency, HHV Basis (%)	77.8	80.1	80.7	81.5	82.2	82.5
Utility Usage						
Total Power (MW _e)	14.4	13.7	14.1	14.6	15.3	17.3
Natural Gas Reforming	3.3	2.0	2.7	3.6	4.7	1.2
Syngas Purification	2.3	2.3	2.3	2.3	2.3	2.1
Steam System	0.2	0.4	0.3	0.3	0.3	0.3
CO ₂ Compression	7.1	7.0	6.9	6.7	6.5	6.4
Purge Recovery	n/a	n/a	n/a	n/a	n/a	5.7
Cooling Towers	0.1	0.1	0.1	0.1	0.1	0.1
Water Treatment	1.4	2.0	1.8	1.6	1.4	1.5
Total Water (gpm) ²	650	958	876	786	692	743
Evaporation Rate (gpm)	341	348	350	353	355	354
CO ₂ Emissions						
Captured (ton/day CO ₂)	2,143	2,123	2,076	2,024	1,970	1,927
Emitted (ton/day CO ₂)	855	525	403	267	126	142
Nuclear Integration Summary						
Electricity Demand (MW _e)	n/a	13.7	14.1	14.6	15.3	17.3
Process Heat Demand (MW _t)	n/a	116.9	132.2	149.1	166.6	176.8

Idaho National LaboratorySENSITIVITY OF HYDROGEN PRODUCTION
VIA STEAM METHANE REFORMING TO HIGH
TEMPERATURE GAS-COOLED REACTOR
OUTLET TEMPERATURE PROCESS ANALYSISIdentifier:
Revision:
0
Effective Date:TEV-961
0
0
0
0

Table 2. (continued).

		HTGR- Integrated	HTGR- Integrated	HTGR- Integrated	HTGR- Integrated	HTGR- Integrated
	Conventional	(725°C ROT)	(775°C ROT)	(825°C ROT)	(875°C ROT)	(925°C ROT)
Helium Flow Rate (kg/s)	n/a	83.62	79.78	79.21	79.42	78.49
Helium Supply Temperature (°C)	n/a	700	750	800	850	900
Helium Return Temperature (°C)	n/a	431	431	437	446	466
Integration Assessment						
Ideal Helium Return Temperature (°C) ³	n/a	303	343	382	421	461
Excess Heat for Power Generation $(MW_t)^4$	n/a	55.6	36.5	22.6	10.3	2.0
Power Generation Efficiency $(\%)^3$	n/a	38.4	38.4	38.7	39.0	39.7
Power Generation Capability (MW _e) ⁵	n/a	21.4	14.0	8.7	4.0	0.8
Excess Power Generation Capability (MW _e) ⁶	n/a	7.7	-0.1	-5.9	-11.3	-16.5
# 600 MW _t HTGRs Required (Heat + Power)	n/a	0.29	0.28	0.29	0.29	0.30
# 600 MW _t HTGRs Required (Heat Only)	n/a	0.19	0.22	0.25	0.28	0.29
# 600 MWt HTGRs Required (Power Only)	n/a	0.09	0.06	0.04	0.02	0.00
Equivalent Reactor Size Required (MWt)	n/a	172.5	168.7	171.7	176.9	178.8

1. Standard temperature of 60 degrees F.

2. Does not include heat rejection for the nuclear plant; does not include credit for export steam condensate return.

3. Interpolated from TEV-981.

4. Based on the calculated helium flowrate and the calculated and ideal helium return temperatures.

5. Based on the excess heat available and power generation efficiency.

6. A negative value indicates that a small amount of power would need to be imported from the grid, or the reactor size could be increased accordingly.

SENSITIVITY OF HYDROGEN PRODUCTION
VIA STEAM METHANE REFORMING TO HIGH
TEMPERATURE GAS-COOLED REACTOR
OUTLET TEMPERATURE PROCESS ANALYSISIdentifier:
TEV-961
Revision:
0
Effective Date:TEV-961
0
Page: 18 of 22

Figure 3. Natural gas consumption as a function of ROT.

As ROT is increased, the ratio of hydrogen product to natural gas feed increases significantly. Also, by shifting the required reforming duty from fuelgas combustion to nuclear heat, less combustion exhaust gas is generated. Because steam is raised to recover heat from the combustion exhaust gas, a decrease in fuelgas combustion leads to a corresponding decrease in the amount of steam generated and exported from the plant. These results are shown in Figure 4. The increase in hydrogen product yield going from an ROT of 875°C (1,607°F) to 925°C (1,697°F) is relatively small. In addition, steam export increases slightly between these cases. This result is due in part to the flowsheet modifications made for the 925°C (1,697°F) ROT case—complete removal of the fired reforming stage and inclusion of the cryogenic separation unit to remove nitrogen from the fuelgas prior to recycle to the reformer.

SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision:	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Date:	00/15/2010	$P_{age}: 10 \text{ of } 22$
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date.	09/13/2010	rage. 19 01 22

Figure 4. SMR H₂ product and steam export yields as a function of ROT.

Power consumption in the conventional SMR process is quite modest. Integrating nuclear heat with limited fuelgas recycle (i.e., ROT of 725°C) results in a small decrease in power consumption, primarily due to a reduction in the CO_2 compression power requirement. However, as ROT increases, fuelgas recycle compression requirements also increase, resulting in a small increase in power consumption.

As seen in Table 2, the trend for water consumption mirrors the trend for steam export from the plant. This is because the model does not make the assumption that condensate will be returned from exported steam; hence, an increase in export steam will result in additional water loss from the plant.

 CO_2 emissions are also reduced as a result of integrating nuclear heat. As the ROT increases, a higher percentage of the fuelgas is recycled, leading to a decrease in CO_2 emissions. For an ROT of 725°C (1,337°F), CO_2 emissions are reduced by 39% compared to the conventional SMR case. For an ROT of 925°C (1,697°F), CO_2 emissions are reduced by an additional 73% from the 725°C (1,337°F) ROT case, representing a total CO_2 emissions reduction of 83% compared to the conventional SMR case. Due to

Idaho National Laboratory			
SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision.	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Deter	00/15/2010	Daga: 20 af 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date:	09/15/2010	Page: 20 of 22

the recycle of fuelgas, the amount of captured CO_2 also decreases slightly as ROT is increased. CO_2 disposition for each case is shown graphically in Figure 5.

Figure 5. SMR CO₂ disposition as a function of ROT.

As the ROT increases, the difference between the helium return temperature and the optimal helium inlet temperature to the HTGR decreases. At an ROT of 725°C (1,337°F), the difference is 71°C (128°F), while an ROT of 925°C (1,697°F) produces a difference of only 3°C (5°F). Hence, the higher ROT is more compatible with a "heat-only" HTGR configuration. At lower ROTs, inserting a power cycle is the most likely scenario to utilize the excess heat returned from the reformer.

As the ROT increases from 725°C (1,337°F) to 925°C (1,697°F), the process heat demand increases from 117 MW_t to 177 MW_t. However, over this same range, the heat available for power generation decreases from 56 MW_t to 2 MW_t. Hence, the output required from the nuclear plant to support the SMR does not change appreciably as a result of increasing the ROT. In all cases, less than $\frac{1}{3}$ of a 600 MW_t reactor would be sufficient to support a world-scale single-train hydrogen plant regardless of the ROT selected.

Idaho National Laboratory			
SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision [.]	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Deter	00/15/2010	Degay 21 of 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date:	09/15/2010	Page: 21 01 22

As the ROT increases from 725°C (1,337°F) to 925°C (1,697°F), the amount of excess heat available to generate power decreases. Above an ROT of 775°C, import of power from an external source would be required to support operation of the SMR (17 MW_e for the 925°C (1,697°F) ROT case). As an alternative, the capacity of the HTGR could be increased slightly to meet the power demand of the SMR. This is the likely scenario if the HTGR is built to support the needs of multiple industrial users.

Of all the HTGR-integrated cases considered, only the 925°C (1,697°F) ROT case completely eliminates the need for two reforming stages—nuclear heat alone is adequate in this case to provide the desired reforming temperature. This greatly simplifies the design of the reformer.

4. FUTURE WORK AND RECOMMENDATIONS

Several recommendations relating to HTGR-integrated SMR development were previously summarized in TEV-953. In addition to those recommendations, the following items are also recommended for future consideration:

- An economic analysis should be performed using the modeling results from this study as input. It is believed that such an analysis is required in order to further quantify the benefits offered by increasing the ROT from 725°C (1,337°F) to 925°C (1,697°F).
- If HTGR-integrated SMR technology is selected for further development, a more detailed model of the cryogenic separation unit should be developed for the 925°C (1,697°F) ROT case. The current model uses simplistic flash separators rather than multi-stage distillation columns, which significantly under-predicts the actual separation efficiency that could be achieved.

5. **REFERENCES**

Aspen Plus, Version 2006, Burlington, Massachusetts: Aspen Tech, 2006.

- INL, 2010a, "HTGR-Integrated Hydrogen Production via Steam Methane Reforming (SMR) Process Analysis," Idaho National Laboratory, TEV-953, Rev. 0.
- INL, 2010b, "An Analysis of the Effect of Reactor Outlet Temperature of a High Temperature Reactor on Electric Power Generation, Hydrogen Production, and Process Heat," Idaho National Laboratory, TEV-981, Rev. 0.

6. **APPENDIXES**

Appendix A, Detailed Modeling Results and Flowsheets

Appendix B, [Electronic] Case 1 – Conventional SMR Stream Results.xlsx

SENSITIVITY OF HYDROGEN PRODUCTION	Identifier:	TEV-961	
VIA STEAM METHANE REFORMING TO HIGH	Revision:	0	
TEMPERATURE GAS-COOLED REACTOR	Effective Date:	00/15/2010	Dage: 22 of 22
OUTLET TEMPERATURE PROCESS ANALYSIS	Effective Date.	09/13/2010	r age. 22 01 22

Appendix C, [Electronic] Case 2 – 725C ROT SMR Stream Results.xlsx Appendix D, [Electronic] Case 3 – 775C ROT SMR Stream Results.xlsx Appendix E, [Electronic] Case 4 – 825C ROT SMR Stream Results.xlsx Appendix F, [Electronic] Case 5 – 875C ROT SMR Stream Results.xlsx Appendix G, [Electronic] Case 6 – 925C ROT SMR Stream Results.xlsx

Appendix A Detailed Modeling Results and Flowsheets

HTGR-Integrated SMR Temperature Sensitivity Case Summary

	Conventional	HTGR-Integrated (725°C ROT)	HTGR-Integrated (775°C ROT)	HTGR-Integrated (825°C ROT)	HTGR-Integrated (875°C ROT)	HTGR-Integrated (925°C ROT)
Inputs						
Natural Gas Feed Rate (MMSCFD) ¹	49.2	43.5	40.8	37.7	34.5	34.0
Outputs						
Hydrogen (MMSCFD) ¹	130	130	130	130	130	130
Steam Export (MMBtu/hr)	23.6	176.2	138.8	97.4	54.3	83.7
Performance Metrics						
H ₂ Product / Natural Gas Feed (scf/scf)	2.64	2.99	3.19	3.45	3.77	3.82
Steam Export / H ₂ Product (Ib/Ib)	0.80	5.94	4.68	3.28	1.83	2.82
Process Thermal Efficiency, HHV Basis (%)	77.8	80.1	80.7	81.5	82.2	82.5
Utility Usage						
Total Power (MW _e)	14.4	13.7	14.1	14.6	15.3	17.3
Natural Gas Reforming	3.3	2.0	2.7	3.6	4.7	1.2
Syngas Purification	2.3	2.3	2.3	2.3	2.3	2.1
Steam System	0.2	0.4	0.3	0.3	0.3	0.3
CO ₂ Compression	7.1	7.0	6.9	6.7	6.5	6.4
Purge Recovery	n/a	n/a	n/a	n/a	n/a	5.7
Cooling Towers	0.1	0.1	0.1	0.1	0.1	0.1
Water Treatment	1.4	2.0	1.8	1.6	1.4	1.5
Total Water (gpm) ²	650	958	876	786	692	743
Evaporation Rate (gpm)	341	348	350	353	355	354
CO ₂ Emissions						
Captured (ton/day CO ₂)	2,143	2,123	2,076	2,024	1,970	1,927
Emitted (ton/day CO ₂)	855	525	403	267	126	142
Nuclear Integration Summary						
Electricity Demand (MW _e)	n/a	13.7	14.1	14.6	15.3	17.3
Process Heat Demand (MWt)	n/a	116.9	132.2	149.1	166.6	176.8
Hellum Flow Rate (kg/s)	n/a	83.62	79.78	79.21	79.42	78.49
Helium Supply Temperature (*C)	n/a	700	750	800	850	900
Hellum Return Temperature (*C)	n/a	431	431	437	446	466
Integration Assessment						
Ideal Helium Return Temperature (*C) ³	n/a	303	343	382	421	461
Excess Heat for Power Generation (MWt) ⁴	n/a	55.6	36.5	22.6	10.3	2.0
Power Generation Efficiency (%) ³	n/a	38.4	38.4	38.7	39.0	39.7
Power Generation Capability (MW _e) ⁵	n/a	21.4	14.0	8.7	4.0	0.8
Excess Power Generation Capability (MW _e) ⁶	n/a	7.7	-0.1	-5.9	-11.3	-16.5
# 600 MW ₇ HTGRs Required (Heat + Power)	n/a	0.29	0.28	0.29	0.29	0.30
# 600 MW _T HTGRs Required (Heat Only)	n/a	0.19	0.22	0.25	0.28	0.29
# 600 MW _T HTGRs Required (Power Only)	n/a	0.09	0.06	0.04	0.02	0.00
Equivalent Reactor Size Required (MWt)	n/a	172.5	168.7	171.7	176.9	178.8

¹Standard temperature of 60 degrees F.

²Does not include heat rejection for the nuclear plant; does not include credit for export steam condensate return.

³Interpolated from TEV-981.

⁴Based on the calculated helium flowrate and the calculated and ideal helium return temperatures

⁵Based on the excess heat available and power generation efficiency.

⁶A negative value indicates that a small amount of power would need to be imported from the grid, or the reactor size could be increased accordingly.

1115. TON/DY 49.2 MMSCFD @ 60°F

23063. BTU/LB 1044. BTU/SCF @ 60°F

51411. MMBTU/DY

93.571 MOL.% 3.749 MOL.%

0.920 MOL.%

0.260 MOL.%

0.040 MOL.% 0.010 MOL.%

1.190 MOL.%

0.010 MOL.%

0.250 MOL.% 1. PPMV

0. PPMV

0. PPMV

0. PPMV 2458. PPMV

Calculator Block SUMMARY

FEED SUMMARY:

NATURAL GAS PROPERTIES:

MASS FLOW = VOLUME FLOW = HHV =HHV =ENERGY FLOW =

COMPOSITION: METHANE =ETHANE =PROPANE = BUTANE = PENTANE =HEXANE = NITROGEN = OXYGEN = CO2 =C4H10S =C2H6S =H2S =

N2

CH4

INTERMEDIATE PRODUCT SUMMARY:

RAW SYNGAS MASS FLOW =	364878. LB/HR
RAW SYNGAS VOLUME FLOW =	263. MMSCFD @ 60°F
RAW SYNGAS COMPOSITION:	
н2	47.7 MOL.%
CO	9.2 MOL.%
C02	5.3 MOL.%
N2	0.2 MOL.%
H2O 0	34.2 MOL.%
СН4	3.5 MOL.%
FINAL PRODUCT SUMMARY:	
HYDROGEN MASS FLOW =	29000. LB/HR
UNDROGEN VOLUME ELOW	

130. MMSCFD @ 60°F HYDROGEN VOLUME FLOW = HYDROGEN COMPOSITION: 99.9 MOL.% Н2 N2 0.0 MOL.% 0.1 MOL.% CH4 11. PPMV CO 3. PPMV C02 0. PPMV H20 23097. LB/HR EXPORT HP STEAM FLOW = EXPORT HP STEAM CREDIT = 23.6 MMBTU/HR 615. PSIA STEAM PRESSURE = STEAM TEMPERATURE =489. DEG. FSTEAM ENTHALPY (FOR CREDIT) =1023. BTU/LBCONDENSED TO LIQUID AT 1 ATM AT BOILING POINT CARBON DIOXIDE MASS FLOW = 178876. LB/HR CARBON DIOXIDE VOLUME FLOW = 37. MMSCFD @ 60°F CARBON DIOXIDE COMPOSITION: 99.1 MOL.% C02 0.6 MOL.% Н2

Case	1	-	Conventional SMR	
			187.	PPMV
			221.	PPMV

POWER SUMMARY:

СО H2O

ELECTRICAL CONSUMERS: NG REFORMER POWER CONSUMPTION = GAS CLEANING POWER CONSUMPTION = STEAM SYSTEM POWER CONSUMPTION = CO2 COMPRESSION POWER CONSUMPTION = COOLING TOWER POWER CONSUMPTION = WATER TREATMENT POWER CONSUMPTION = CONSUMER SUBTOTAL = NET PLANT POWER CONSUMPTION =	3.3 MW 2.3 MW 0.2 MW 7.1 MW 0.1 MW 1.4 MW 14.4 MW		
WATER BALANCE:			
EVAPORATIVE LOSSES: COOLING TOWER EVAPORATION = ZLD SYSTEM EVAPORATION = TOTAL EVAPORATIVE LOSSES =	238.3 GPM 102.8 GPM 341.1 GPM		
WATER CONSUMED: BOILER FEED WATER MAKEUP = COOLING TOWER MAKEUP = TOTAL WATER CONSUMED =	582.5 GPM 250.9 GPM 833.5 GPM		
WATER GENERATED: GAS CLEANING CONDENSATE = COOLING TOWER BLOWDOWN = TOTAL WATER GENERATED =	237.2 GPM 49.3 GPM 286.5 GPM		
PLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED ≔ WATER CONSUMED / NG FED =	649.7 GPM 3.50 LB/LB		
CO2 BALANCE:			
CO2 EMITTED (TOTAL) = CO2 EMITTED (TOTAL) =	855. TON/DY 15. MMSCFD @ 60°F		
SEQUESTRATION READY CO2 = SEQUESTRATION READY CO2 =	2143. TON/DY 37. MMSCFD @ 60°F		
CO2 EMITTED / NG FED =	0.77 LB/LB		
EFFICIENCY CALCULATIONS:			
OVERALL PROCESS THERMAL EFFICIENCY: ASSUMPTIONS: (1) FOR STEAM EXPORT - HEAT RECOVERY CREDIT ASSUMES SATURATED LIQUID AT ATMOSPHERIC PRESSURE (2) FOR ELECTRICITY IMPORT - ELECTRICAL GENERATION EFFICIENCY OF 33%			

HHV	BASIS	8000- 8000-	77.8%
LHV	BASIS	#	72.6%

OVERALL PROCESS COLD GAS EFFICIENCY:

Case 1 - Conventional SMR (INCLUDES ONLY NATURAL GAS FEED AND HYDROGEN PRODUCT) HHV BASIS = 82.1% LHV BASIS = 76.9% OTHER PERFORMANCE METRICS: HYDROGEN PRODUCT TO NATURAL GAS FEED = 2.64 SCF/SCF (SHOULD BE AROUND 2.5) STEAM EXPORT TO HYDROGEN PRODUCT = 0.80 TON/TON(SHOULD BE BETWEEN 5 AND 18) Calculator Block AIRPROPS HUMIDITY DATA FOR STREAM PRI-AIR: 43.5 GRAINS/LB HUMIDITY RATIO = RELATIVE HUMIDITY = 39.0 % Calculator Block NG-RFMR Hierarchy: REFORMER SULFUR REMOVAL CONDITIONS: 734. °F INLET BED TEMPERATURE = PRIMARY REFORMER CONDITIONS: 1292. °F INLET TEMPERATURE = 3.00 STEAM TO CARBON MOLAR RATIO = 9.02 % NATURAL GAS BURNED FOR HEAT = 1600.°F OUTLET TEMPERATURE = 78.1 % METHANE CONVERSION = Calculator Block GASCLEAN Hierarchy: GAS-CLN WATER GAS SHIFT CONDITIONS: HIGH-TEMPERATURE SHIFT REACTOR: INLET TEMPERATURE = 635. °F (MINIMUM ALLOWABLE = 600° F) INLET STEAM:DRY GAS RATIO = 0.52 (MINIMUM ALLOWABLE = 0.4) 769.°F OUTLET TEMPERATURE = OUTLET CO (DRY BASIS) = 3.23 MOL.% LOW-TEMPERATURE SHIFT REACTOR: 332. °F INLET DEW TEMPERATURE = 375.°F **INLET TEMPERATURE =** (SHOULD BE AT LEAST 375°F) (SHOULD BE AT LEAST 27°F ABOVE DEW TEMPERATURE) INLET STEAM:DRY GAS RATIO = 0.38 (MINIMUM ALLOWABLE = 0.3) 418.°F OUTLET TEMPERATURE =

Case 1 - Conventional SMR

OUTLET CO (DRY BASIS) =	0.35 MOL.%
SELEXOL PERFORMANCE:	
INLET CO2 CONCENTRATION == OUTLET CO2 CONCENTRATION =	18.9 % 0.2 %
CO2 CAPTURE = CO2 PURITY =	99.0 % 99.1 %
SELEXOL UTILITY REQUIREMENTS: ELECTRICITY USAGE = STEAM USAGE =	2.3 MW 72959. LB/HR
CO2 COMPRESSION:	
PRESSURE = ELECTRICITY USAGE =	2015. PSIA 7.1 MW
PSA PERFORMANCE:	
HYDROGEN RECOVERY = HYDROGEN PURITY =	88.0 % 99.90 %

Natural Gas Steam Reforming

Syngas Cleaning & Conditioning

A-11

Steam System

A-12

Calculation of Excess Heat Available for Power Generation

Case 2 - 725C ROT

Calculator Block SUMMARY

FEED SUMMARY:

CH4

NATURAL GAS PROPERTIES:

985. TON/DY MASS FLOW =43.5 MMSCFD @ 60°F VOLUME FLOW = 23063. BTU/LB HHV = 1044. BTU/SCF @ 60°F 45434. MMBTU/DY HHV =ENERGY FLOW = COMPOSITION: 93.571 MOL.% METHANE = 3.749 MOL.% ETHANE = 0.920 MOL.% PROPANE = 0.260 MOL.% BUTANE =0.040 MOL.% PENTANE = 0.010 MOL.% HEXANE =1.190 MOL.% NITROGEN = OXYGEN = 0.010 MOL.% CO2 =0.250 MOL.% C4H10S = 1. PPMV C2H6S =0. PPMV 0. PPMV H2S =INTERMEDIATE PRODUCT SUMMARY: 361400. LB/HR 261. MMSCFD @ 60°F RAW SYNGAS MASS FLOW = RAW SYNGAS VOLUME FLOW = RAW SYNGAS COMPOSITION: 47.8 MOL.% H2 9.2 MOL.% CO 5.3 MOL.% C02 0.2 MOL.% N2 н20 34.1 MOL.% 3.5 MOL.% CH4 FINAL PRODUCT SUMMARY: 29000. LB/HR HYDROGEN MASS FLOW = HYDROGEN VOLUME FLOW = 130. MMSCFD @ 60°F HYDROGEN COMPOSITION: 99.9 MOL.% Н2 0.0 MOL.% N2 0.1 MOL.% CH4 11. PPMV C0 3. PPMV 0. PPMV CO2 Н20 EXPORT HP STEAM FLOW = 172213. LB/HR EXPORT HP STEAM CREDIT = 176.2 MMBTU/HR 615. PSIA STEAM PRESSURE = 489. DEG. F 1023. BTU/LB STEAM TEMPERATURE = STEAM ENTHALPY (FOR CREDIT) = CONDENSED TO LIQUID AT 1 ATM AT BOILING POINT 177159. LB/HR CARBON DIOXIDE MASS FLOW = CARBON DIOXIDE VOLUME FLOW = 37. MMSCFD @ 60°F CARBON DIOXIDE COMPOSITION: 99.1 MOL.% C02 0.6 MOL.% н2 N2

Case	2	-	725C	ROT	
				188.	PPMV
				223.	PPMV

POWER SUMMARY:

СО H2O

ELECTRICAL CONSUMERS: NG REFORMER POWER CONSUMPTION = GAS CLEANING POWER CONSUMPTION = POWER BLOCK POWER CONSUMPTION = CO2 PROCESSING POWER CONSUMPTION = COOLING TOWER POWER CONSUMPTION = WATER TREATMENT POWER CONSUMPTION = CONSUMER SUBTOTAL =	2.0 MW 2.3 MW 0.4 MW 7.0 MW 0.1 MW 2.0 MW 13.7 MW
NET PLANT POWER CONSUMPTION =	13.7 MW
WATER BALANCE:	
EVAPORATIVE LOSSES: COOLING TOWER EVAPORATION = ZLD SYSTEM EVAPORATION = TOTAL EVAPORATIVE LOSSES =	193.3 GPM 154.3 GPM 347.7 GPM
WATER CONSUMED: BOILER FEED WATER MAKEUP = COOLING TOWER MAKEUP = TOTAL WATER CONSUMED =	874.5 GPM 203.7 GPM 1078.2 GPM
WATER GENERATED: GAS CLEANING CONDENSATE = COOLING TOWER BLOWDOWN = TOTAL WATER GENERATED =	234.7 GPM 40.0 GPM 274.7 GPM
PLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED = WATER CONSUMED / NG FED =	957.7 GPM 5.84 LB/LB
CO2 BALANCE:	
CO2 EMITTED (TOTAL) = CO2 EMITTED (TOTAL) =	525. TON/DY 9. MMSCFD @ 60°F
SEQUESTRATION READY CO2 = SEQUESTRATION READY CO2 =	2123. TON/DY 37. MMSCFD @ 60°F
CO2 EMITTED / NG FED =	0.53 LB/LB
NUCLEAR INTEGRATION REQUIREMENTS:	
TOTAL ELECTRICITY DEMAND =	13.7 MW
TOTAL HEAT DEMAND = TOTAL HEAT DEMAND =	116.9 MW 398.8 MMBTU/HR
HELIUM FLOWRATE REQUIRED = 6 HELIUM FLOWRATE REQUIRED =	63671. LB/HR 83.62 KG/S
HELIUM SUPPLY TEMPERATURE = HELIUM SUPPLY TEMPERATURE =	1292. DEG. F. 700. DEG. C.

Case 2 HELIUM RETURN TEMPERATURE = HELIUM RETURN TEMPERATURE =	- 725C ROT 807. DEG. F. 431. DEG. C.
EFFICIENCY CALCULATIONS:	
OVERALL PROCESS THERMAL EFFICIENC ASSUMPTIONS: (1) FOR STEAM EXPORT - HEAT F ASSUMES SATURATED LIQUID (2) FOR ELECTRICITY IMPORT - GENERATION EFFICIENCY OF	CY: RECOVERY CREDIT AT ATMOSPHERIC PRESSURE ELECTRICAL 38.4%
HHV BASIS = LHV BASIS =	80.1% 74.6%
OVERALL PROCESS COLD GAS EFFICIEN (INCLUDES ONLY NATURAL GAS FEED	NCY: D AND HYDROGEN PRODUCT)
HHV BASIS = LHV BASIS =	92.9% 87.1%
OTHER PERFORMANCE METRICS:	
HYDROGEN PRODUCT TO NATURAL GAS (CONVENTIONAL PROCESS IS AROUND	5 FEED = 2.99 SCF/SCF 5 2.5)
STEAM EXPORT TO HYDROGEN PRODUC (CONVENTIONAL PROCESS IS TYPICA	CT = 5.94 TON/TON ALLY BETWEEN 5 AND 18)
Calculator Block AIRPROPS	
HUMIDITY DATA FOR STREAM PRI-AIR: HUMIDITY RATIO = RELATIVE HUMIDITY =	43.5 GRAINS/LB 39.0 %
Calculator Block NG-RFMR Hierarchy: F	REFORMER
SULFUR REMOVAL CONDITIONS:	
INLET BED TEMPERATURE =	729. °F
PRIMARY REFORMER CONDITIONS:	
STAGE 1:	
INLET TEMPERATURE = STEAM TO CARBON MOLAR RATIO = OUTLET TEMPERATURE = METHANE CONVERSION =	1000. °F 3.00 1247. °F 27.8 %
STAGE 2:	
INLET TEMPERATURE = STEAM TO CARBON MOLAR RATIO = OUTLET TEMPERATURE = METHANE CONVERSION =	1247. °F 2.37 1600. °F 69.7 %
OVERALL METHANE CONVERSION =	78.2 %

Calculator Block GASCLEAN Hierarchy: GAS-CLN

Case 2 - 725C ROT

WATER GAS SHIFT CONDITIONS:	
HIGH-TEMPERATURE SHIFT REACTOR:	
<pre>INLET TEMPERATURE = (MINIMUM ALLOWABLE = 600°F)</pre>	635. °F
INLET STEAM:DRY GAS RATIO = (MINIMUM ALLOWABLE = 0.4)	0.52
OUTLET TEMPERATURE =	769.°F
OUTLET CO (DRY BASIS) =	3.23 MOL.%
LOW-TEMPERATURE SHIFT REACTOR:	
INLET DEW TEMPERATURE =	332.°F
INLET TEMPERATURE = $(SHOW D) PE AT LEAST 275°F$	375.°F
(SHOULD BE AT LEAST 27°F ABOVE	DEW TEMPERATURE)
INLET STEAM:DRY GAS RATIO = (MINIMUM ALLOWABLE = 0.3)	0.38
OUTLET TEMPERATURE =	418. °F
OUTLET CO (DRY BASIS) =	0.36 MOL.%
SELEXOL PERFORMANCE:	
INLET CO2 CONCENTRATION = OUTLET CO2 CONCENTRATION =	18.9 % 0.2 %
CO2 CAPTURE = CO2 PURITY =	99.0 % 99.1 %
SELEXOL UTILITY REQUIREMENTS: ELECTRICITY USAGE = STEAM USAGE =	2.3 MW 72398. LB/HR
CO2 COMPRESSION:	
PRESSURE = ELECTRICITY USAGE =	2015. PSIA 7.0 MW
PSA PERFORMANCE:	
HYDROGEN RECOVERY = HYDROGEN PURITY =	88.0 % 99.90 %

•

Natural Gas Steam Reforming

Syngas Cleaning & Conditioning

Steam System

Calculator Block SUMMARY

FEED SUMMARY: NATURAL GAS PROPERTIES: 922. TON/DY MASS FLOW =40.8 MMSCFD @ 60°F VOLUME FLOW = 23063. BTU/LB HHV =1044. BTU/SCF @ 60°F 42551. MMBTU/DY HHV =ENERGY FLOW = COMPOSITION: 93.571 MOL.% METHANE =3.749 MOL.% ETHANE = 0.920 MOL.% PROPANE = BUTANE = 0.260 MOL.% PENTANE =0.040 MOL.% 0.010 MOL.% HEXANE =1.190 MOL.% NITROGEN = OXYGEN =0.010 MOL.% 0.250 MOL.% CO2 =C4H10S = 1. PPMV 0. PPMV C2H6S = H2S =0. PPMV INTERMEDIATE PRODUCT SUMMARY: 357219. LB/HR RAW SYNGAS MASS FLOW = RAW SYNGAS VOLUME FLOW = 260. MMSCFD @ 60°F RAW SYNGAS COMPOSITION: 48.1 MOL.% н2 CO 9.0 MOL.% 5.1 MOL.% CO2 0.3 MOL.% N2 H20 34.0 MOL.% 3.5 MOL.% CH4 FINAL PRODUCT SUMMARY: HYDROGEN MASS FLOW = 29000. LB/HR HYDROGEN VOLUME FLOW = 130. MMSCFD @ 60°F HYDROGEN COMPOSITION: Н2 99.9 MOL.% 0.0 MOL.% Ν2 0.1 MOL.% CH4 10. PPMV CO 3. PPMV 0. PPMV CO2 н20 EXPORT HP STEAM FLOW = 135666. LB/HR EXPORT HP STEAM CREDIT = 138.8 MMBTU/HR STEAM PRESSURE = 615. PSIA 489. DEG. F 1023. BTU/LB STEAM TEMPERATURE = STEAM ENTHALPY (FOR CREDIT) = CONDENSED TO LIQUID AT 1 ATM AT BOILING POINT 173265. LB/HR CARBON DIOXIDE MASS FLOW = 36. MMSCFD @ 60°F CARBON DIOXIDE VOLUME FLOW = CARBON DIOXIDE COMPOSITION: CO2 99.1 MOL.% 0.7 MOL.% Н2 0. PPMV N2 2517. PPMV CH4

Case	3	-	775C	ROT	
				187.	PPMV
				227.	PPMV

C0
н2о

DOWED	CHIMMADV	
FOWER	JUNIMARI	

ELECTRICAL CONSUMERS: NG REFORMER POWER CONSUMPTION = GAS CLEANING POWER CONSUMPTION = POWER BLOCK POWER CONSUMPTION = CO2 PROCESSING POWER CONSUMPTION = COOLING TOWER POWER CONSUMPTION = WATER TREATMENT POWER CONSUMPTION = CONSUMER SUBTOTAL =	2.7 MW 2.3 MW 0.3 MW 6.9 MW 0.1 MW 1.8 MW 14.1 MW
NET PLANT POWER CONSUMPTION =	14.1 MW
WATER BALANCE:	
EVAPORATIVE LOSSES: COOLING TOWER EVAPORATION = ZLD SYSTEM EVAPORATION = TOTAL EVAPORATIVE LOSSES =	210.3 GPM 139.6 GPM 349.9 GPM
WATER CONSUMED: BOILER FEED WATER MAKEUP = COOLING TOWER MAKEUP = TOTAL WATER CONSUMED =	791.3 GPM 221.5 GPM 1012.8 GPM
WATER GENERATED: GAS CLEANING CONDENSATE = COOLING TOWER BLOWDOWN = TOTAL WATER GENERATED =	232.7 GPM 43.5 GPM 276.2 GPM
PLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED = WATER CONSUMED / NG FED =	876.3 GPM 5.70 LB/LB
CO2 BALANCE:	
CO2 EMITTED (TOTAL) = CO2 EMITTED (TOTAL) =	403. TON/DY 7. MMSCFD @ 60°F
SEQUESTRATION READY CO2 = SEQUESTRATION READY CO2 =	2076. TON/DY 36. MMSCFD @ 60°F
CO2 EMITTED / NG FED =	0.44 LB/LB
NUCLEAR INTEGRATION REQUIREMENTS:	
TOTAL ELECTRICITY DEMAND =	14.1 MW
TOTAL HEAT DEMAND = TOTAL HEAT DEMAND =	132.2 MW 450.9 MMBTU/HR
HELIUM FLOWRATE REQUIRED = 61 HELIUM FLOWRATE REQUIRED =	33142. LB/HR 79.78 кG/S
HELIUM SUPPLY TEMPERATURE = HELIUM SUPPLY TEMPERATURE =	1382. DEG. F. 750. DEG. C.

Case 3 - 775C ROT HELIUM RETURN TEMPERATURE = 808. DEG. F. 431. DEG. C. HELIUM RETURN TEMPERATURE = **EFFICIENCY CALCULATIONS:** OVERALL PROCESS THERMAL EFFICIENCY: ASSUMPTIONS: (1) FOR STEAM EXPORT - HEAT RECOVERY CREDIT ASSUMES SATURATED LIQUID AT ATMOSPHERIC PRESSURE (2) FOR ELECTRICITY IMPORT - ELECTRICAL **GENERATION EFFICIENCY OF 38.4%** 80.7% HHV BASIS = 74.7% LHV BASIS = OVERALL PROCESS COLD GAS EFFICIENCY: (INCLUDES ONLY NATURAL GAS FEED AND HYDROGEN PRODUCT) 99.2% HHV BASIS = LHV BASIS = 93.0% OTHER PERFORMANCE METRICS: HYDROGEN PRODUCT TO NATURAL GAS FEED = 3.19 SCF/SCF (CONVENTIONAL PROCESS IS AROUND 2.5) STEAM EXPORT TO HYDROGEN PRODUCT = 4.68 TON/TON (CONVENTIONAL PROCESS IS TYPICALLY BETWEEN 5 AND 18) Calculator Block AIRPROPS HUMIDITY DATA FOR STREAM PRI-AIR: 43.5 GRAINS/LB HUMIDITY RATIO = RELATIVE HUMIDITY = 39.0 % Calculator Block NG-RFMR Hierarchy: REFORMER SULFUR REMOVAL CONDITIONS: INLET BED TEMPERATURE = 719. °F PRIMARY REFORMER CONDITIONS: STAGE 1: 1000. °F INLET TEMPERATURE = 3.00 STEAM TO CARBON MOLAR RATIO = 1337.°F OUTLET TEMPERATURE = 38.3 % METHANE CONVERSION = STAGE 2: 1337.°F INLET TEMPERATURE = 2.27 STEAM TO CARBON MOLAR RATIO = 1600.°F OUTLET TEMPERATURE = 63.7 % METHANE CONVERSION = OVERALL METHANE CONVERSION = 77.6 %

Calculator Block GASCLEAN Hierarchy: GAS-CLN

WATER GAS SHIFT CONDITIONS:	
HIGH-TEMPERATURE SHIFT REACTOR:	
<pre>INLET TEMPERATURE = (MINIMUM ALLOWABLE = 600°F)</pre>	635. °F
<pre>INLET STEAM:DRY GAS RATIO = (MINIMUM ALLOWABLE = 0.4)</pre>	0.51
OUTLET TEMPERATURE =	767. °F
OUTLET CO (DRY BASIS) =	3.17 MOL.%
LOW-TEMPERATURE SHIFT REACTOR:	
INLET DEW TEMPERATURE =	332.°F
INLET TEMPERATURE = $(SHOULD RE AT LEAST 375°E)$	375.°F
(SHOULD BE AT LEAST 27°F ABOVE	DEW TEMPERATURE)
INLET STEAM:DRY GAS RATIO = (MINIMUM ALLOWABLE = 0.3)	0.37
OUTLET TEMPERATURE =	417. °F
OUTLET CO (DRY BASIS) =	0.35 MOL.%
SELEXOL PERFORMANCE:	
INLET CO2 CONCENTRATION = OUTLET CO2 CONCENTRATION =	18.5 % 0.2 %
CO2 CAPTURE = CO2 PURITY =	99.0 % 99.1 %
SELEXOL UTILITY REQUIREMENTS: ELECTRICITY USAGE = STEAM USAGE =	2.3 MW 72158. LB/HR
CO2 COMPRESSION:	
PRESSURE = ELECTRICITY USAGE =	2015. PSIA 6.9 MW
PSA PERFORMANCE:	
HYDROGEN RECOVERY = HYDROGEN PURITY =	88.0 % 99.90 %

Natural Gas Steam Reforming

Syngas Cleaning & Conditioning

Steam System

Simplified Water Treatment

Calculator Block SUMMARY

FEED SUMMARY: NATURAL GAS PROPERTIES: 853. TON/DY MASS FLOW =37.7 MMSCFD @ 60°F VOLUME FLOW = 23063. BTU/LB HHV =1044. BTU/SCF @ 60°F 39350. MMBTU/DY HHV =ENERGY FLOW = COMPOSITION: 93.571 MOL.% METHANE = 3.749 MOL.% ETHANE = 0.920 MOL.% PROPANE =BUTANE =0.260 MOL.% 0.040 MOL.% PENTANE = 0.010 MOL.% HEXANE =1.190 MOL.% NITROGEN = OXYGEN =0.010 MOL.% CO2 = C4H10S = 0.250 MOL.% 1. PPMV 0. PPMV C2H6S =H2S =0. PPMV INTERMEDIATE PRODUCT SUMMARY: 352864. LB/HR RAW SYNGAS MASS FLOW = RAW SYNGAS VOLUME FLOW = 259. MMSCFD @ 60°F RAW SYNGAS COMPOSITION: 48.5 MOL.% Н2 8.9 MOL.% CO 5.0 MOL.% C02 0.4 MOL.% N2 33.7 MOL.% н20 3.5 MOL.% CH4 FINAL PRODUCT SUMMARY: HYDROGEN MASS FLOW = 29000. LB/HR 130. MMSCFD @ 60°F HYDROGEN VOLUME FLOW = HYDROGEN COMPOSITION: 99.9 MOL.% н2 0.0 MOL.% N2 0.1 MOL.% CH4 10. PPMV CO 3. PPMV 0. PPMV CO2 н20 EXPORT HP STEAM FLOW = 95152. LB/HR EXPORT HP STEAM CREDIT = 97.4 MMBTU/HR STEAM PRESSURE = 615. PSIA STEAM TEMPERATURE = 489. DEG. F 1023. BTU/LB STEAM ENTHALPY (FOR CREDIT) = CONDENSED TO LIQUID AT 1 ATM AT BOILING POINT CARBON DIOXIDE MASS FLOW = 168932. LB/HR CARBON DIOXIDE VOLUME FLOW = 35. MMSCFD @ 60°F CARBON DIOXIDE COMPOSITION: 99.0 MOL.% CO2 0.7 MOL.% Н2 N2 0. PPMV 2601. PPMV CH4

Case	4	-	825C ROT	
			187.	PPMV
			232.	PPMV

C0 H20

	SUMMARY:
LOWEN	JOHNART

ELECTRICAL CONSUMERS: NG REFORMER POWER CONSUMPTION = GAS CLEANING POWER CONSUMPTION = POWER BLOCK POWER CONSUMPTION = CO2 PROCESSING POWER CONSUMPTION = COOLING TOWER POWER CONSUMPTION = WATER TREATMENT POWER CONSUMPTION = CONSUMER SUBTOTAL =	3.6 MW 2.3 MW 0.3 MW 6.7 MW 0.1 MW 1.6 MW 14.6 MW
NET PLANT POWER CONSUMPTION =	14.0 MW
WATER BALANCE:	
EVAPORATIVE LOSSES: COOLING TOWER EVAPORATION = ZLD SYSTEM EVAPORATION = TOTAL EVAPORATIVE LOSSES =	229.3 GPM 123.3 GPM 352.7 GPM
WATER CONSUMED: BOILER FEED WATER MAKEUP = COOLING TOWER MAKEUP = TOTAL WATER CONSUMED =	699.0 GPM 241.5 GPM 940.4 GPM
WATER GENERATED: GAS CLEANING CONDENSATE = COOLING TOWER BLOWDOWN = TOTAL WATER GENERATED =	230.2 GPM 47.5 GPM 277.7 GPM
PLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED = WATER CONSUMED / NG FED =	786.1 GPM 5.53 LB/LB
CO2 BALANCE:	
CO2 EMITTED (TOTAL) = CO2 EMITTED (TOTAL) =	267. TON/DY 5. MMSCFD @ 60°F
SEQUESTRATION READY CO2 = SEQUESTRATION READY CO2 =	2024. TON/DY 35. MMSCFD @ 60°F
CO2 EMITTED / NG FED =	0.31 LB/LB
NUCLEAR INTEGRATION REQUIREMENTS:	
TOTAL ELECTRICITY DEMAND =	14.6 MW
TOTAL HEAT DEMAND = TOTAL HEAT DEMAND =	149.1 MW 508.9 MMBTU/HR
HELIUM FLOWRATE REQUIRED = 62 HELIUM FLOWRATE REQUIRED =	28657. LB/HR 79.21 KG/S
HELIUM SUPPLY TEMPERATURE = HELIUM SUPPLY TEMPERATURE =	1472. DEG. F. 800. DEG. C.

Case 4 - 8	825C ROT	
HELIUM RETURN TEMPERATURE = HELIUM RETURN TEMPERATURE =	437. DEG. C.	
EFFICIENCY CALCULATIONS:		
OVERALL PROCESS THERMAL EFFICIENCY:		
ASSUMPTIONS: (1) FOR STEAM EXPORT - HEAT RECOVERY CREDIT		
ASSUMES SATURATED LIQUID AT ATMOSPHERIC PRESSURE		
GENERATION EFFICIENCY OF 38		
HHV BASTS =	81 5%	
LHV BASIS =	74.8%	
OVERALL PROCESS COLD GAS EFFICIENCY	·	
(INCLUDES ONLY NATURAL GAS FEED AND HYDROGEN PRODUCT)		
HHV BASIS =	107.2%	
LHV BASIS =	100.5%	
OTHER PERFORMANCE METRICS:		
HYDROGEN PRODUCT TO NATURAL GAS FEED = 3.45 SCF/SCF		
(CONVENTIONAL PROCESS IS AROUND 2		
STEAM EXPORT TO HYDROGEN PRODUCT = 3.28 TON/TON		
(CONVENTIONAL PROCESS IS TIPICALL	T BETWEEN 5 AND 10)	
Calculator Block AIRPROPS		
HUMIDITY DATA FOR STREAM PRI-AIR:		
HUMIDITY RATIO =	43.5 GRAINS/LB 39.0 %	
Calculator Block NG-RFMR Hierarchy: REFORMER		
SULFUR REMOVAL CONDITIONS:		
INLET BED TEMPERATURE =	709.°F	
PRIMARY REFORMER CONDITIONS:		
STAGE 1:		
INLET TEMPERATURE =	1000. °F	
STEAM TO CARBON MOLAR RATIO = OUTLET TEMPERATURE =	3.00 1427. °F	
METHANE CONVERSION =	50.7 %	
STAGE 2:		
INLET TEMPERATURE =	1427. °F	
STEAM TO CARBON MOLAR RATIO = OUTLET TEMPERATURE =	7 16	
	1600.°F	
METHANE CONVERSION =	1600. °F 53.3 %	
METHANE CONVERSION = OVERALL METHANE CONVERSION =	1600. °F 53.3 % 77.0 %	

Calculator Block GASCLEAN Hierarchy: GAS-CLN

Case 4 - 825C ROT

WATER GAS SHIFT CONDITIONS:	
HIGH-TEMPERATURE SHIFT REACTOR:	
INLET TEMPERATURE = (MINIMUM ALLOWABLE = 600°F)	635. °F
INLET STEAM:DRY GAS RATIO = (MINIMUM ALLOWABLE = 0.4)	0.51
OUTLET TEMPERATURE =	766.°F
OUTLET CO (DRY BASIS) =	3.10 MOL.%
LOW-TEMPERATURE SHIFT REACTOR:	
INLET DEW TEMPERATURE =	331. °F
INLET TEMPERATURE = (50000 pr)	375. °F
(SHOULD BE AT LEAST 575 F) (SHOULD BE AT LEAST 27°F ABOVE	DEW TEMPERATURE)
INLET STEAM:DRY GAS RATIO = (MINIMUM ALLOWABLE = 0.3)	0.37
OUTLET TEMPERATURE =	416. °F
OUTLET CO (DRY BASIS) =	0.34 MOL.%
SELEXOL PERFORMANCE:	
INLET CO2 CONCENTRATION = OUTLET CO2 CONCENTRATION =	18.1 % 0.2 %
CO2 CAPTURE = CO2 PURITY =	99.0 % 99.0 %
SELEXOL UTILITY REQUIREMENTS: ELECTRICITY USAGE = STEAM USAGE =	2.2 MW 71932. LB/HR
CO2 COMPRESSION:	
PRESSURE = ELECTRICITY USAGE =	2015. PSIA 6.7 MW
PSA PERFORMANCE:	
HYDROGEN RECOVERY = HYDROGEN PURITY =	88.0 % 99.90 %

Natural Gas Steam Reforming

Syngas Cleaning & Conditioning

Steam System

8

Calculator Block SUMMARY

FEED SUMMARY: NATURAL GAS PROPERTIES: 781. TON/DY MASS FLOW =34.5 MMSCFD @ 60°F VOLUME FLOW = 23063. BTU/LB HHV =1044. BTU/SCF @ 60°F 36004. MMBTU/DY HHV =ENERGY FLOW = COMPOSITION: 93.571 MOL.% METHANE =3.749 MOL.% ETHANE = 0.920 MOL.% PROPANE = BUTANE = 0.260 MOL.% 0.040 MOL.% PENTANE = 0.010 MOL.% HEXANE =1.190 MOL.% NITROGEN = OXYGEN =0.010 MOL.% C02 =0.250 MOL.% C4H10S = 1. PPMV 0. PPMV C2H6S =H2S =0. PPMV **INTERMEDIATE PRODUCT SUMMARY:** 349724. LB/HR RAW SYNGAS MASS FLOW = RAW SYNGAS VOLUME FLOW = 258. MMSCFD @ 60°F RAW SYNGAS COMPOSITION: 48.8 MOL.% Н2 8.7 MOL.% CO 4.8 MOL.% C02 N2 0.7 MOL.% H20 33.4 MOL.% 3.6 MOL.% CH4 FINAL PRODUCT SUMMARY: HYDROGEN MASS FLOW = 29000. LB/HR HYDROGEN VOLUME FLOW = 130. MMSCFD @ 60°F HYDROGEN COMPOSITION: 99.9 MOL.% Н2 0.0 MOL.% N2 0.1 MOL.% CH4 10. PPMV CO 3. PPMV 0. PPMV CO2 H20 EXPORT HP STEAM FLOW = 53100. LB/HR 54.3 MMBTU/HR EXPORT HP STEAM CREDIT = STEAM PRESSURE = 615. PSIA 489. DEG. F STEAM TEMPERATURE = EAM ENTHALPY (FOR CREDIT) = 1023. BTU/LB CONDENSED TO LIQUID AT 1 ATM AT BOILING POINT STEAM ENTHALPY (FOR CREDIT) = 164385. LB/HR CARBON DIOXIDE MASS FLOW = CARBON DIOXIDE VOLUME FLOW = 34. MMSCFD @ 60°F CARBON DIOXIDE COMPOSITION: 99.0 MOL.% CO2 0.7 MOL.% Н2 0. PPMV N2 2687. PPMV CH4

Case	5	_	875C	ROT	
				186.	PPMV
				238.	PPMV

POWER	SUMMARY:
1 Onen	201-11-12 (111)

СО H2O

ELECTRICAL CONSUMERS: NG REFORMER POWER CONSUMPTION =4.7 MW GAS CLEANING POWER CONSUMPTION =2.3 MW POWER BLOCK POWER CONSUMPTION =0.3 MW CO2 PROCESSING POWER CONSUMPTION =0.1 MW MW CONSUMER POWER CONSUMPTION =0.1 MW MW MER TREATMENT POWER CONSUMPTION =1.4 MW 15.3 MWNET PLANT POWER CONSUMPTION =15.3 MWWATER BALANCE:EVAPORATIVE LOSSES: COOLING TOWER EVAPORATION =248.4 GPM 15.3 MWWATER BALANCE:EVAPORATIVE LOSSES =354.7 GPMWATER CONSUMED: BOILER FEED WATER MAKEUP =602.5 GPM 261.6 GPM 261.6 GPM 261.6 GPMWATER CONSUMED: BOILER FEED WATER MAKEUP =602.5 GPM 261.6 GPM 261.6 GPMWATER CONSUMED: GAS CLEANING CONDENSATE = COOLING TOWER BLOWDOWN =51.4 GPMVATER GENERATED: GAS CLEANING CONDENSATE = 278.4 GPM278.4 GPMPLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED = WATER CONSUMED / NG FED =691.9 GPM 5.32 LB/LBCO2 BALANCE: CO2 EMITTED (TOTAL) = CO2 EMITTED (TOTAL) = SEQUESTRATION READY CO2 = SEQUESTRATION READY CO2 = SEQUESTRATION READY CO2 = CO2 EMITTED / NG FED =126. TON/DY 34. MMSCFD @ 60°NUCLEAR INTEGRATION REQUIREMENTS:126. LB/LB		
WATER BALANCE: EVAPORATIVE LOSSES: COOLING TOWER EVAPORATION = 248.4 GPM TOTAL EVAPORATIVE LOSSES = 354.7 GPM WATER CONSUMED: BOILER FEED WATER MAKEUP = 602.5 GPM COOLING TOWER MAKEUP = 261.6 GPM TOTAL WATER CONSUMED = 864.0 GPM WATER GENERATED: GAS CLEANING CONDENSATE = 277.0 GPM COOLING TOWER BLOWDOWN = 51.4 GPM TOTAL WATER GENERATED = 278.4 GPM PLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED = 691.9 GPM WATER CONSUMED / NG FED = 126. TON/DY CO2 EMITTED (TOTAL) = 2. MMSCFD @ 60° SEQUESTRATION READY CO2 = 1970. TON/DY SEQUESTRATION READY CO2 = 0.16 LB/LB NUCLEAR INTEGRATION REQUIREMENTS:	ELECTRICAL CONSUMERS: NG REFORMER POWER CONSUMPTION = GAS CLEANING POWER CONSUMPTION = POWER BLOCK POWER CONSUMPTION = CO2 PROCESSING POWER CONSUMPTION = CO0LING TOWER POWER CONSUMPTION = WATER TREATMENT POWER CONSUMPTION CONSUMER SUBTOTAL = NET PLANT POWER CONSUMPTION =	4.7 MW 2.3 MW 0.3 MW = 6.5 MW 0.1 MW = 1.4 MW 15.3 MW
EVAPORATIVE LOSSES: 248.4 GPM ZLD SYSTEM EVAPORATION = 106.3 GPM TOTAL EVAPORATIVE LOSSES = 354.7 GPM WATER CONSUMED: 602.5 GPM COOLING TOWER MAKEUP = 602.5 GPM COOLING TOWER MAKEUP = 261.6 GPM COOLING TOWER MAKEUP = 864.0 GPM WATER GENERATED: 227.0 GPM GAS CLEANING CONDENSATE = 227.0 GPM COOLING TOWER BLOWDOWN = 51.4 GPM TOTAL WATER GENERATED = 278.4 GPM PLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED = 691.9 GPM WATER CONSUMED / NG FED = 5.32 LB/LB 5.32 LB/LB CO2 BALANCE: 2 2 MMSCFD @ 60° SEQUESTRATION READY CO2 = 1970. TON/DY 34. MMSCFD @ 60° CO2 EMITTED / NG FED = 0.16 LB/LB 0.16 LB/LB NUCLEAR INTEGRATION REQUIREMENTS: 1126. D.16 LB/LB	WATER BALANCE:	
EVAPORATIVE LOSSES: COOLING TOWER EVAPORATION = ZLD SYSTEM EVAPORATION = TOTAL EVAPORATIVE LOSSES =248.4 GPM 106.3 GPM 354.7 GPMWATER CONSUMED: BOILER FEED WATER MAKEUP = COOLING TOWER MAKEUP = TOTAL WATER CONSUMED =602.5 GPM 261.6 GPM 864.0 GPMWATER GENERATED: GAS CLEANING CONDENSATE = COOLING TOWER BLOWDOWN = TOTAL WATER GENERATED =227.0 GPM 51.4 GPMPLANT WATER GENERATED = WATER CONSUMED / NG FED =278.4 GPMPLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED = WATER CONSUMED / NG FED =691.9 GPM 5.32 LB/LBCO2 BALANCE: CO2 EMITTED (TOTAL) = SEQUESTRATION READY CO2 = O.16 LB/LBNUCLEAR INTEGRATION REQUIREMENTS:		
WATER CONSUMED: BOILER FEED WATER MAKEUP = COOLING TOWER MAKEUP = TOTAL WATER CONSUMED = WATER GENERATED: GAS CLEANING CONDENSATE = COOLING TOWER BLOWDOWN = TOTAL WATER GENERATED = PLANT WATER GENERATED = WATER CONSUMED / NG FED = CO2 BALANCE: CO2 BALANCE: CO2 EMITTED (TOTAL) = CO2 EMITTED (TOTAL) = SEQUESTRATION READY CO2 = SEQUESTRATION READY CO2 = CO2 EMITTED / NG FED = NUCLEAR INTEGRATION REQUIREMENTS: WATER CONSUMED / NG FED = NUCLEAR INTEGRATION REQUIREMENTS:	EVAPORATIVE LOSSES: COOLING TOWER EVAPORATION = ZLD SYSTEM EVAPORATION = TOTAL EVAPORATIVE LOSSES =	248.4 GPM 106.3 GPM 354.7 GPM
WATER GENERATED: GAS CLEANING CONDENSATE = COOLING TOWER BLOWDOWN = TOTAL WATER GENERATED = PLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED = WATER CONSUMED / NG FED = CO2 BALANCE: CO2 EMITTED (TOTAL) = CO2 EMITTED (TOTAL) = SEQUESTRATION READY CO2 = SEQUESTRATION READY CO2 = CO2 EMITTED / NG FED = NUCLEAR INTEGRATION REQUIREMENTS: WATER GENERATED = CO3 EMITTED / NG FED = NUCLEAR INTEGRATION REQUIREMENTS: WATER GENERATED = CO3 EMITTED / NG FED = CO3 EMITTED / NG FED = CO3 EMITTED / NG FED = NUCLEAR INTEGRATION REQUIREMENTS: WATER GENERATED = CO3 EMITTED / NG FED = CO3 EMITTED	WATER CONSUMED: BOILER FEED WATER MAKEUP = COOLING TOWER MAKEUP = TOTAL WATER CONSUMED =	602.5 GPM 261.6 GPM 864.0 GPM
PLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED =691.9 GPM 5.32 LB/LBCO2 BALANCE:5.32 LB/LBCO2 EMITTED (TOTAL) = CO2 EMITTED (TOTAL) =126. TON/DY 2. MMSCFD @ 60°SEQUESTRATION READY CO2 = SEQUESTRATION READY CO2 = CO2 EMITTED / NG FED =1970. TON/DY 34. MMSCFD @ 60°NUCLEAR INTEGRATION REQUIREMENTS:	WATER GENERATED: GAS CLEANING CONDENSATE = COOLING TOWER BLOWDOWN = TOTAL WATER GENERATED =	227.0 GPM 51.4 GPM 278.4 GPM
CO2 BALANCE: CO2 EMITTED (TOTAL) = 126. TON/DY CO2 EMITTED (TOTAL) = 2. MMSCFD @ 60° SEQUESTRATION READY CO2 = 1970. TON/DY SEQUESTRATION READY CO2 = 34. MMSCFD @ 60° CO2 EMITTED / NG FED = 0.16 LB/LB NUCLEAR INTEGRATION REQUIREMENTS:	PLANT WATER SUMMARY: NET MAKEUP WATER REQUIRED = WATER CONSUMED / NG FED =	691.9 GPM 5.32 LB/LB
CO2 EMITTED (TOTAL) =126. TON/DY 2. MMSCFD @ 60°SEQUESTRATION READY CO2 =1970. TON/DY 34. MMSCFD @ 60°CO2 EMITTED / NG FED =0.16 LB/LBNUCLEAR INTEGRATION REQUIREMENTS:	CO2 BALANCE:	
SEQUESTRATION READY CO2 = SEQUESTRATION READY CO2 =1970. TON/DY 34. MMSCFD @ 60°CO2 EMITTED / NG FED =0.16 LB/LBNUCLEAR INTEGRATION REQUIREMENTS:	CO2 EMITTED (TOTAL) = CO2 EMITTED (TOTAL) =	126. TON/DY 2. MMSCFD @ 60°F
CO2 EMITTED / NG FED = 0.16 LB/LB NUCLEAR INTEGRATION REQUIREMENTS:	SEQUESTRATION READY CO2 = SEQUESTRATION READY CO2 =	1970. TON/DY 34. MMSCFD @ 60°F
NUCLEAR INTEGRATION REQUIREMENTS:	CO2 EMITTED / NG FED =	0.16 LB/LB
	NUCLEAR INTEGRATION REQUIREMENTS:	
TOTAL ELECTRICITY DEMAND = 15.3 MW	TOTAL ELECTRICITY DEMAND =	15.3 MW
TOTAL HEAT DEMAND =166.6 MWTOTAL HEAT DEMAND =568.4 MMBTU/HR	TOTAL HEAT DEMAND = TOTAL HEAT DEMAND =	166.6 мw 568.4 ммвти/нк
HELIUM FLOWRATE REQUIRED = 630342. LB/HR HELIUM FLOWRATE REQUIRED = 79.42 KG/S	HELIUM FLOWRATE REQUIRED = HELIUM FLOWRATE REQUIRED =	630342. LB/HR 79.42 KG/S
HELIUM SUPPLY TEMPERATURE = 1562. DEG. F. HELIUM SUPPLY TEMPERATURE = 850. DEG. C.	HELIUM SUPPLY TEMPERATURE = HELIUM SUPPLY TEMPERATURE =	1562. DEG. F. 850. DEG. C.

Case 5 - 875C ROT HELIUM RETURN TEMPERATURE = 835. DEG. F. HELIUM RETURN TEMPERATURE = 446. DEG. C. **EFFICIENCY CALCULATIONS:** OVERALL PROCESS THERMAL EFFICIENCY: **ASSUMPTIONS:** (1) FOR STEAM EXPORT - HEAT RECOVERY CREDIT ASSUMES SATURATED LIQUID AT ATMOSPHERIC PRESSURE (2) FOR ELECTRICITY IMPORT - ELECTRICAL **GENERATION EFFICIENCY OF 39.0%** 82.2% HHV BASIS ≈ 74.9% LHV BASIS = OVERALL PROCESS COLD GAS EFFICIENCY: (INCLUDES ONLY NATURAL GAS FEED AND HYDROGEN PRODUCT) 117.1% HHV BASIS = LHV BASIS = 109.8% **OTHER PERFORMANCE METRICS:** HYDROGEN PRODUCT TO NATURAL GAS FEED = 3.77 SCF/SCF (CONVENTIONAL PROCESS IS AROUND 2.5) STEAM EXPORT TO HYDROGEN PRODUCT = 1.83 TON/TON (CONVENTIONAL PROCESS IS TYPICALLY BETWEEN 5 AND 18) Calculator Block AIRPROPS HUMIDITY DATA FOR STREAM PRI-AIR: HUMIDITY RATIO = 43.5 GRAINS/LB **RELATIVE HUMIDITY =** 39.0 % Calculator Block NG-RFMR Hierarchy: REFORMER SULFUR REMOVAL CONDITIONS: INLET BED TEMPERATURE = 700.°F PRIMARY REFORMER CONDITIONS: STAGE 1: 1000. °F INLET TEMPERATURE = STEAM TO CARBON MOLAR RATIO = 3.00 1517. °F OUTLET TEMPERATURE = 64.0 % METHANE CONVERSION = STAGE 2: 1517. °F INLET TEMPERATURE = STEAM TO CARBON MOLAR RATIO = 2.05 1600.°F OUTLET TEMPERATURE = 34.4 % METHANE CONVERSION = OVERALL METHANE CONVERSION = 76.3 %

Calculator Block GASCLEAN Hierarchy: GAS-CLN

Case 5 - 875C ROT

WATER GAS SHIFT CONDITIONS:	
HIGH-TEMPERATURE SHIFT REACTOR:	
INLET TEMPERATURE = (MINIMUM ALLOWABLE = 600°F)	635. °F
INLET STEAM:DRY GAS RATIO = (MINIMUM ALLOWABLE = 0.4)	0.50
OUTLET TEMPERATURE =	764. F
OUTLET CO (DRY BASIS) =	3.01 MOL.%
LOW-TEMPERATURE SHIFT REACTOR:	
INLET DEW TEMPERATURE =	331. °F
INLET TEMPERATURE =	375. °F
(SHOULD BE AT LEAST 373 F) (SHOULD BE AT LEAST 27°F ABOVE	DEW TEMPERATURE)
INLET STEAM:DRY GAS RATIO = (MINIMUM ALLOWABLE = 0.3)	0.37
OUTLET TEMPERATURE =	415. °F
OUTLET CO (DRY BASIS) =	0.33 MOL.%
SELEXOL PERFORMANCE:	
INLET CO2 CONCENTRATION = OUTLET CO2 CONCENTRATION =	17.7 % 0.2 %
CO2 CAPTURE = CO2 PURITY =	99.0 % 99.0 %
SELEXOL UTILITY REQUIREMENTS: ELECTRICITY USAGE = STEAM USAGE =	2.2 MW 71874. LB/HR
CO2 COMPRESSION:	
PRESSURE = ELECTRICITY USAGE =	2015. PSIA 6.5 MW
PSA PERFORMANCE:	
HYDROGEN RECOVERY = HYDROGEN PURITY =	88.0 % 99.90 %

Natural Gas Steam Reforming

Syngas Cleaning & Conditioning

Steam System

